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Abstract  This study was carried out on the Pang catchment as a representative of the Thames River basin in the 
southeast of England, UK. The basin receives an average of 690 mm rainfall per year, making it one of the driest 
parts of the UK. Two-thirds of the basin is permeable chalk, middle Jurassic limestones, and river gravels. The 
Chalk is the main aquifer in southeast England. The aim of this study was to investigate the impact of climate and 
land-use changes on water resources. The UKCP09 climate scenarios up to 2099 were applied. The results indicated 
that by the 2080s, under high emission scenarios, streamflow could decrease by 37%, 32%, and 70% during 
summer-autumn, winter and spring, respectively while the groundwater recharge could decrease by 70% and 46% 
during summer-autumn and winter-spring, respectively. Increasing broadleaf forest area would reduce streamflow 
and groundwater recharge by 15% and 19% during spring and summer, respectively. The Reconnaissance Drought 
Index, RDI projected an increase in number, severity, and frequency of drought events up to the 2080s. The results 
of the Pang would help in future regional planning and management of the water resources in the southeast of 
England. 
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1. Introduction 

Given the continuous global population increase, water 
resources are coming under increasing pressure. In addition 
to population increase, there are other factors that exert 
pressure on water resources, such as climate and land use 
changes [1]. Streamflow and groundwater recharge strongly 
depend on climate and land use practices. The prospect of 
drier summers and wetter winters in the UK, due to 
climate change, would have significant impact on water 
resources, especially where the water requirements of the 
urban and rural communities must be carefully managed 
in order to protect and preserve the natural ecosystem [2]. 

The potential impact of the land use changes on the 
streamflow takes place due to differences in evaporation 
and transpiration rates from different types of vegetation 
and the difference in the rooting depth [3]. In a study [4] 
on the impact of land cover changes over 1508 catchments 
across the world. They found that the land cover made  
an important contribution in the water balance. Studies  
in a Northern England catchment [5] found an increase  
of runoff by ploughing upland grass area of a small 
catchment and a decrease in number of trees also resulted 

in increased runoff. The other factor which could affect 
the hydrological cycle is the urban expansion due to the 
changes from vegetated to impermeable surfaces, which 
often results in increased runoff [6]. Most of the studies 
suggested that the impact of land use changes is more 
evident on small catchments, such as the Pang catchment. 

The definition of drought varies from one country to 
another, due to the complexity of drought phenomena, 
difference in hydro-climatic conditions and catchment 
characteristics. For that reason, there is a lack of a 
universal drought index for assessing drought conditions 
in a certain region. There is a need to conduct an 
evaluation of different drought indices in order to identify 
a suitable drought index for a certain region.  

In a previous study [7], indices were compared  
for their ability to predict agricultural drought impacts  
in the UK. They selected two of the most commonly  
used drought indices, the Standardized Precipitation  
Index SPI which represents the deviation from long-term 
average precipitation and the Standardized Precipitation-
Evaporation Index, SPEI for the period 1975-2012. They 
found that the SPEI is the best indicator to predict the 
probability of drought impacts on agriculture in the UK. 
Assessment of the performance of five drought indices [8] 
for a semi-arid basin in western India for the period of 25 
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years (1985-2009) was carried out. They concluded that 
SPEI is the most suitable drought index for monitoring 
drought conditions.  

In Iran, [9] used meteorological data of 22 synoptic 
stations with different climatic conditions during 1967-
2014 to calculate the Reconnaissance Drought Index, RDI 
which represents the ratio of total rainfall to total potential 
evapotranspiration and the effective Reconnaissance 
Drought Index, eRDI, which uses effective rainfall. They 
found that in stations with humid condition, difference 
between RDI and eRDI indices were not significant, but in 
stations with hyper-arid and arid condition, the difference 
was significant.  

The Pang catchment has special significance as it has been 
subjected to drought in the past and could be at further 
risk in the future, due to climate and land use changes. As 
there was no comprehensive study conducted on this low 
land catchment, the main aim of this study is to assess the 
impact of climate and land use changes on surface and 
ground water resources and to identify the relevant drought 
indices for meteorological, hydrological and agricultural 
droughts under current and future climate conditions.  

The model selected for this study is the Distributed 
Catchment Scale model, DiCaSM [10]. The model has 
been successfully applied on catchments in Brazil [11,12], 
in Italy, [13] and in Cyprus [14]. The results suggested 
that the DiCaSM model could be used as an effective tool 

for water authorities and decision makers to help balance 
future water demand and supply.  

2. The Catchment, Data and  
the Methodology  

2.1. The Pang Catchment 
The Pang catchment is situated in the eastern part of the 

Berkshire-Marlborough Downs, England, UK (Figure 1), 
and the stream flow gauging station is at Pangbourne. The 
NRFA reference number is 39027 with the catchment area 
of 170.9 km2. The average annual rainfall between 1961 
and 1990 (baseline data) was 695 mm, while the average 
rainfall for the period 1961-2012 was slightly over  
700 mm. River flow data were available from 1968. 
Before 1993 the runoff of the catchment was substantially 
reduced by groundwater abstractions by the Compton 
pumping station at Compton. The catchment is a 
representative of typical Southern England chalk lowland, 
with river flows that are dominated by slow responding 
groundwater. The catchment experienced a number of 
drought events, including the 1975-77, 1991-92, 1995-97, 
2004-06, 2010-12 and 2018 drought events. The key land 
cover comprises woodland 16%, arable and horticultural 
land 51%, grass 29% and urban 4% (Figure 2). 

 
Figure 1. The boundary of the Pang catchment and the location of the gauging station at Pangbourne, Berkshire, adapted from [15] 
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Figure 2. Current land use in the Pang catchment 

2.2. The Modelling Input Data 
For the modelling study, the physically based 

Distributed Catchment Scale Model, DiCaSM, was 
selected. The catchment was divided into 218 grid squares, 
each of which has an area of 1 km2. The model was run on 
daily time step. The model input requires daily data of 
precipitation, temperature, wind speed, net radiation or 
total radiation and vapour pressure. The rainfall is a key 
input for runoff generation calculation while temperature, 
radiation, vapour pressure and wind speed are essential to 
calculate the evapotranspiration. Climate data were obtained 
from the Climate, Hydrology and Ecology research 
Support System (CHESS) for 1962 until 2012 period. The 
catchment boundary and gauging station location were 
collected from Centre for Ecology and Hydrology [16] 
and [17] and the National River Flow Archive provided 
data for the daily river flow for the Pang catchment [18]. 
The naturalized river flow data (1979-2012) were obtained 
from the UK Environment Agency, EA. The data were 

used to calibrate and validated the stream flow predicted 
by the model. The UK Land Cover data were obtained 
from the Centre for Ecology and Hydrology (Land Cover 
Map 2007 (25m raster, GB) Web Map Service [15]. The 
map was used to provide the relative area of each land 
cover type within each grid square of the catchment. The 
data were used to calculate the evapotranspiration of each 
land cover type. The soil data were obtained from 
Cranfield University (1:250 000 Soilscapes for England 
and Wales Web Map Service). The soil properties data 
were used to calculate the infiltration of water through the 
soil surface, water movement between the soil layers, 
drainage, recharge, soil water storage and availability for 
plants. The digital elevation model (DEM) was available 
from CEH data archive. The data were used to generate 
the elevation of each grid square and subsequently used to 
calculate the slopes and the surface flow directions. Plant 
parameters obtained from the UK Meteorological Office 
MORECS system that has a database for UK land covers 
and were used for evapotranspiration calculations. 

Table 1. Probabilistic changes in temperature and precipitation for the Pang catchment using the joint probability of the UKCP09 climate 
change scenarios for low, medium and high emission scenarios for the 2020s, 2050s and 2080s (30-year time periods).  
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2020s 1.29 1.26 1.65 1.64 1.36 1.28 1.49 1.60 1.35 1.26 1.49 1.65 

2050s 1.99 1.78 2.73 2.31 2.09 2.07 2.62 2.72 2.48 2.32 3.03 2.95 

2080s 2.57 2.31 2.80 2.96 2.86 2.85 3.59 3.53 3.55 3.66 4.73 4.69 
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To study the impact of future climatic change on water 
resources, the UK Climate Projection Scenarios (UKCP09) 
were used, using the joint probability factors and the weather 
generator data. In this study three 30-year periods: 2020’s 
(2010-2039), 2050’s (2040-2069) and 2080’s (2070-2099) 
for the three greenhouse gas emission scenarios (low, 
medium and high) were considered. The UKCP09 provides 
monthly, seasonal and annual, probabilistic changes factors at 
25 km by 25 km grid square resolution for precipitation 
and temperature (Table 1). The seasonal temperature shows 
an increase with emissions scenario and time, particularly 
in summer and autumn, whereas the precipitation is 
showing rainfall decreases in summer and increases  
in winter relative to the 1961-1990 ‘baseline’ period.  
The weather generator, WG, provides daily output data at 
a 5km2 resolution for more climate variables, such as 
vapour pressure and sunshine hours, in addition to rainfall 
and temperature. The sunshine hours were converted  
into net radiation [19]. The simplified change factors  
were derived from UKCP09 joint probability central 
estimates. Climate change data were input to the DiCaSM 
model. 

2.3. Catchment Characteristics 
The Pang catchment is located in a drier part of the UK 

and often experiences low river flow. Before 1993, the 
catchment has been under severe abstraction of surface 
and groundwater [20]. 

2.4. The DiCaSM Model 
This study applied the DiCaSM hydrological model 

which is the acronym for the Distributed Catchment  
Scale Model [10,14]. The model is physically based and 
considers the commonly known hydrological processes 
such as rainfall interception, infiltration, evapotranspiration, 
surface runoff to streams, recharge to groundwater, water 
uptake by plants, soil moisture dynamics, and stream flow. 
The model adopts a distributed approach with variable 
spatial scale (default is 1km grid square) and requires 
daily input data of rainfall, temperature, wind speed, 
vapour pressure, and total or net radiation and runs on a 
daily time step.  

2.4.1. The Components of the DiCaSM Model 
The rainfall interception by grass was calculated  

using the equations reported in [21], by crops according to 
[22], and by the trees according to [23]. Potential 
evapotranspiration of mixed vegetation was calculated 
according to [24] whereas the surface runoff calculation 
was based on either excess saturation or excess infiltration. 
The infiltration was calculated according to either [25] or 
[26] equations. The runoff is routed between the low 
points of each grid square along the prevailing slope using 
the digital terrain model (DTM). The model calculates soil 
water balance of the root zone based on the four layers 
model [27] and calculates overland and channel flow 
according to [28]. Further details about the model are 
given in [14] and [10].  

 
 

2.4.2. Model Performance Indicators 
To determine the model efficiency/goodness of fit, the 

simulated and observed flow data were compared using a 
number of indices, including the Nash-Sutcliffe Efficiency 
(NSE) coefficient. [29] A NSE coefficient of 1 or 100% 
indicates a perfect match.  
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where Oi and Si refer to the observed and simulated flow 
data, respectively, and Ō is the mean of the observed data.  

The calibration procedure consisted of adjusting the 
stream flow relevant parameters to achieve the best model 
fit with the latter assessed using the NSE values.  

The extreme values in a time series can result in  
a poor NSE values [30]. For this reason, they suggested 
calculating the NSE with natural logarithmic values:  
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In addition, the model performance can be evaluated 
using the coefficient of determination, R2 as: 
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where yo is the observed value, ys is the simulated value, N 
is the total number of observations, 𝑦𝑦� o is the average 
measured value, 𝑦𝑦�s is the average simulated value, 𝜎𝜎𝑦𝑦0 is 
the observed data standard deviation and 𝜎𝜎𝑦𝑦𝑠𝑠  is the 
simulated data standard deviation.  

2.5. Identification of Drought Indices 
Using a range of drought indices helps in identifying 

different types of droughts. The most commonly used 
index is the Standardized Precipitation Index (SPI)  
[31]. The index represents the deviation of precipitation 
from the long-term average, where negative values 
indicate “dry periods” and positive values indicate “wet 
periods”. The SPI index is relevant for meteorological, 
agricultural and hydrological drought, as precipitation is 
the key climatic variable upon which soil moisture deficit, 
stream flow and groundwater recharge depend. The SPI 
could be used to quantify the severity of both dry and wet 
events. The SPI index scale values mean: above 2.0 
extremely wet, 1.5-1.99 very wet, 1.0-1.49 moderately  
wet, -0.99 to 0.99 near normal, -1.0 to -1.49 moderately 
dry, -1.5 to -1.99 severely dry and -2.0 and less, extremely 
dry. 

The other key drought index used in the study was 
Reconnaissance Drought Index (RDI) according to [32]. 
The index is calculated using the ratio of precipitation  
to potential evapotranspiration over a certain period.  
The Reconnaissance Drought Index (RDI) was calculated 
as: 
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where Pij and PETij are the precipitation and potential 
evapotranspiration of the jth month of the ith hydrological 
year (starting from October), a0��� is the arithmetic mean of 
the a0 calculated for the number of years, yi is the ln (𝑎𝑎0

(𝑖𝑖)), 
𝑦𝑦𝑘𝑘��� is its arithmetic mean and 𝜎𝜎�𝑦𝑦𝑘𝑘 is its standard deviation. 
The RDI has been used in studies in Greece [33] and in 
Iran and Iraq [34]. 

An adjusted RDI was also calculated, using the net 
rainfall (gross rainfall minus rainfall interception losses  
by canopy cover) and actual evapotranspiration. The  
RDI index scale values mean: above 2.0 extremely wet, 
1.5-1.99 very wet, 1.0 -1.49 moderately wet, -0.99 to 0.99 
near normal, -1.0 to -1.49 moderately dry, -1.5 to -1.99 
severely dry and -2.0 and less extremely dry [35]. 

The adjusted RDI is not commonly used due to limited 
availability of actual evapotranspiration and net rainfall 
data. The DiCaSM model provides actual evaporation as 
well as net rainfall (after deducting the rainfall intercepted 
by land cover from the total rainfall). Therefore, the RDI 
and the adjusted RDI can be calculated from the model 
output. Both RDI and the adjusted RDI have advantage 
over SPI as the SPI only accounts for precipitation. 

In addition, two more indices were considered, the soil 
moisture deficit, SMD which is widely used as a drought 
index relevant to agricultural drought monitoring [36] and 
soil wetness index for the drought monitoring [37]. A 
SMD of zero means, the catchment’s soil moisture is at 
field capacity. The deviation gets larger when the soil 
moisture starts to fall below the field capacity, especially 
during summer and drought periods. 

The wetness index, WI is a scaled soil moisture of the 
catchment and is a relevant index to detect hydrological 
drought, as this is commonly associated with soil moisture 
status of the catchment. The wetness index, WI represents 
how relatively wet or dry the catchment is over a period of 
time. A WI value of 1 means the catchment is at the 
maximum soil moisture and WI of zero means the 
catchment is at its minimum soil moisture content. The 
soil moisture deficit is the difference between soil moisture at 
field capacity and the current soil moisture. The SMD 
together with the RDI, identify agricultural droughts, 
where availability of the soil water is a key for the crop 
growth and alerting farmers for the need for irrigation. 

3. Results  

3.1. Model Calibration/Validation for  
the Streamflow 

Streamflow data were available from 1970 to 2012, 

climate data were available from 1961 to 2012. For the 
model calibration, the DiCaSM model depends on a 
number of model parameters: base flow, stream bed 
infiltration//leakage, the percentage of flow routed to 
stream, catchment storage/time lag coefficient, exponent 
function of the peak flow and stream storage/time lag 
coefficient. The model was run while tuning the above 
parameters using different time periods and one of the best 
time periods was selected for the model calibration. For 
the Pang, selection of the calibration period was important 
as river flow of the catchment is significantly affected by 
the ground water abstraction thus reducing the streamflow 
substantially. This groundwater abstraction took place 
until 1993. To get the best model parameters, the model 
was calibrated using the best available stream flow  
data after 1994, i.e. after Compton pumping station was 
closed. 

A simple iteration algorithm was used for the optimization 
process in which each of the above-selected parameters 
were assigned a realistic range (minimum and maximum 
values). The range was divided into steps/increments. The 
number of iterations was the multiplication of the number 
of steps of all the calibration parameters. The model 
calculates the NSE for each iteration. An important issue 
in the Pang was to parameterize the extreme drought 
events/low flows, as streamflow is very low during the 
summer months, as the river mainly depends on its base 
flow. Therefore, the base-flow was the most sensitive 
parameter on which stream flow depends. Figure 3 shows 
that the model performed extremely well during the model 
calibration period of three years (2001 - 2003), the model 
efficiency expressed as the NSE was above 92% and ln 
NSE above 89%. The model performance during the 
model validation period was also good, with NSE and ln 
NSE values above 86%. The model performance was 
better during the 1994-2012 period, when the Compton 
pumping station was closed. During the model calibration 
stage, the percentage error between simulated and 
observed stream flow was around 2% (Table 2). The 
model calibration was carried out for a short period 
(Figure 3 left) followed by the validation over longer 
periods, from seven years to the entire available record 
(Figure 3 right). The model results clearly illustrate  
that before 1993, when water was abstracted at the 
Compton pumping station, the observed stream flow  
was always lower than the simulated values, this is 
because groundwater abstraction significantly affects the 
groundwater level and the base-flow contribution to the 
streamflow, especially during the dry summer months. 

The model also performed reasonably well during the 
1970s drought decade, but slightly overestimated, as the 
observed flow was affected by groundwater abstraction. 
The overall model performance was extremely good, 
whether the results of the model efficiency were 
calculated as NSE, ln NSE or R2. Figure 4 shows  
the model’s capability to reasonably predict stream  
flows both during the model calibration and validation  
periods. 

The uncertainty level in streamflow prediction was 
estimated using the containment ratio, CR. The latter 
refers to the % of observations that contained within the 
95% and 5% prediction quantiles. The CR value was 87% 
for the period of 1993-2012 [38]. 

 



 American Journal of Water Resources 223 

 
Figure 3. Model calibration for 2001-2004 (left) and validation for 1994-2002 (right) 

 
Figure 4. Relationship between observed and simulated flow during the model calibration and model validation over a decadal time scale and over the 
entire period 
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Table 2. Pang model performance during the calibration and validation stages 

Periods Process NSE (%) ln NSE R2 Modelled flow 
(m3s-1) 

Observed flow 
(m3s-1) Error % 

After Compton 
pumping closed 

2001-2003* Calibration 92.44 89.17 0.94 0.79 0.81 -2.14% 
2001-2012 Validation 89.57 82.85 0.90 0.66 0.64 2.96 
1994-2000 Validation 86.09 86.74 0.86 0.67 0.68 -2.20 
1970-2012 Validation 80.42 80.13 0.81 0.61 0.59 3.67 

Compton 
pumping in 
operation 

1971-1980 Validation 77.6 79.36 0.78 0.62 0.61 1.76 
1981-1990 Validation 71.25 69.71 0.76 0.65 0.59 11.23 
1971-1993 Validation 71.12 75.72 0.74 0.62 0.58 6.90 

*calibration period. 
 

3.2. Identification of Historic Droughts 

3.2.1. The Standardized Precipitation Index (SPI) 
The SPI was able to identify drought events which took 

place in the Pang catchment between 1961 to 2012 period 
(Figure 5). The SPI drought index crossed over the line 
that represent the extremely severe drought level during 
the 1975/76 drought which affected most parts of the UK 
and Europe.  

The SPI index over 52 years elucidated the successive 
dry events, as those that occurred in the 1970s. The SPI 
index also helped in identifying smaller magnitude drought 
events or drier periods which took place in the late 1960s, 

the 1990s, and in 2003-2005, 2009 and 2010. Such major 
drought events have been reported [39]. According to the 
drought severity index, the 2005 and 2006 summers were 
the greatest droughts of the English lowlands and the 
South-East, where the Pang is located. The magnitude of 
the severity of drought was considered as severe in the 
early 1960s, in the mid-1970s, in 1976 and in 1990, when 
SPI was below -2.0 which is considered extremely dry. 

3.2.2. Reconnaissance Drought Index (RDI) 
Figure 6 shows the comparison between the RDI and 

the adjusted RDI. The RDI and adjusted RDI picked up all 
the drought events which were observed by the SPI index. 

 
Figure 5. Twelve months standardized precipitation index (SPI) for the Pang catchment from 1961-2012 
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Figure 6. Historic RDI and adjusted RDI for the Pang catchment for the period 1962-2012 

The adjusted RDI showed slightly different severity 
levels, especially during the extreme drought events, when 
compared with the RDI index. There is a strong 
correlation between the RDI and the SPI. Figure 5 and 
Figure 6 show that extreme drought conditions were 
observed in 1976, as SPI, adjusted RDI and RDI reached a 
low value of extreme drought level. Drier than average 
spells (SPI less than -10% or RDI less than -1) were also 
observed in 1990, 1996, 1997, 2005, 2006, and 2009 and 
2011. The two major drought events of 1976 and 1989 
were detected by both the SPI and RDI drought indices.  

3.2.3. Soil Moisture Deficit, SMD and Soil Wetness 
Index, WI as Drought Indicators  

Figure 7 shows the WI and SMD during the dry summer 

months. In the dry summer months of 1976, the soil 
moisture deficit reached 208 mm and during the 1975 dry 
summer period, soil moisture deficit reached 150 mm. The 
figure also shows that the severity of the dry event  
of summer 1976 was a result of the dry winter of the 
1975-1976, as the SMD did not drop down to zero as 
expected in winter. In contrast, the 1977 winter months 
received above average rainfall that brought the SMD back 
to zero. It can also be seen that the WI dropped down 
below the winter value of 1.0 to 0.04 during the extreme 
drought of the summer of 1976, and the SMD mirrored the 
trend of the WI. This suggests that the severity of the 1976 
drought reached to a very extreme level during the 
summer season. Each of the drought indices identified the 
1970s drought as severe drought. 

 
Figure 7. Soil moisture deficit (SMD) and the Wetness Index (WI) at root-zone for the Pang catchment during the period 1975-1977 
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3.3. Future Hydrological Changes and  
the Drought Indices 

3.3.1. Changes in Streamflow 
Under all future emission scenarios of the UKCP09, the 

expectation is a strong likelihood of more wintery rainfall, 
lower summer rainfall and higher summer temperatures. 
The effect of low summer rainfall and higher temperature 
will have more impact in the south east of the UK. In the 
current study, climate change scenarios were developed 
using two approaches based on UKCP09 outputs: 
simplified change factors based on joint probability  
data and the weather generator data. Three 30-year  
periods: 2020’s (2010-2039), 2050’s (2040-2069) and 
2080’s (2070-2099) for the three greenhouse gas emission 
scenarios (low, medium and high) were considered. 

Using the joint probability approach, the seasonal 
climate change factors of temperature (± change in °C) 
and rainfall (% change in rainfall) at the most likelihood 
probability level were input to the DiCaSM model and 
applied to the 1961-1990 baseline climate data (Table 1). 
The weather generator data of temperature, rainfall, 
vapour pressure and radiation for 100 realizations of each 
30 years’ period were employed in the DiCaSM model as 
a daily input of the three time periods and the three 
emission levels. The streamflow projections under both 
the simplified change factors suggest that the stream flow 
is more likely to be reduced under all emission scenarios 
without any exception (Table 3).  

Under all emission scenarios, the summer streamflow is 
likely to decrease by 15.6 % to 21.6% in the 2020s, by 
27.9% to 36.7% in 2050s and by 32.7% to 46.6% in 2080s 
when using the joint probability factors and by 18.0% to 
19.7% in the 2020s, 18.0% to 27.6% in the 2050s and  
19.2% to 27.7 % in the 2080s when using the weather 
generator data. A significant decrease in stream flow is 
projected in the 2050s and 2080s summer under all 
emission scenarios, more particularly under the high 
emission scenario. 

This decrease in streamflow is likely to continue during 
the autumn when flow could decrease by up to 36.8 % and 
29.7% in the 2080s when applying UKCP09 joint 
probability and weather generator data under high 
emission scenarios for the 2080s, respectively. Although, 
a consistent pattern of streamflow decrease was found in 

all seasons, using both UKCP09 joint probability factor 
and weather generator data, the severity of the decrease 
was mostly higher when using joint probability factors 
than when using the weather generator data. The severity 
of the change, particularly during the summer season, 
could lead to very low stream flows, possibly leading to a 
high risk of inadequate domestic, environmental and 
agricultural water supply. 

3.3.2. Changes in Groundwater Recharge  
The DiCaSM model results show that groundwater 

recharge is likely to decrease in all seasons and the 
selected study periods, under the three emission scenarios 
(Table 4). The decrease gets greater with time and 
emission level with 2080s high emission showing the 
largest decrease in groundwater recharge. This decrease 
was generally higher when using joint probability factors 
than when using the weather generator data.  

Although the UKCP09 projects an increase in  
winter precipitation, this would be counterbalanced by the 
higher water losses due to the increased temperature, 
evapotranspiration and soil moisture deficit, which result 
in a significant decrease in groundwater recharge. During 
the spring season, under all emission scenarios, a likely 
decrease in groundwater recharge is projected for all 
selected time periods. This decrease is likely to continue 
in the summer months due to low summer precipitation 
and increasing temperature, evapotranspiration and soil 
moisture deficit. The groundwater recharge could decrease 
by up to 72% under high emission scenarios of the 2080s 
when using joint probability factors. However, the 
groundwater recharge decrease was below 50%. when 
using the UKCP09 weather generator data. It was 
suggested [40] that the drier summers could also lead to 
increased soil moisture deficit extending into the autumn 
and could shorten the winter recharge season. Considering 
an increase in winter rainfall, as projected under all 
emission scenarios, one would expect an increase in 
groundwater recharge but this might not happen as future 
winter precipitation is expected to come as extreme events 
and over a short period of time, as reported [41] and 
would result in increased soil moisture deficit and water 
losses due to the evapotranspiration and less recharge. The 
results shown in Table 4 clearly support this finding, as 
under all emission scenarios the groundwater recharge is 
likely to decrease for all future time periods. 

Table 3. Future changes in streamflow observed using joint probability and the daily weather generator data output from the UKCP09  

Scenarios Season % change (joint probability) % change (weather generator) 

  Low emission Medium emission High emission Low emission Medium emission High emission 

2020s 

Winter -12.5 -16.3 -17.5 -10.8 -18.3 -18.7 
Spring -11.8 -16.3 -17.3 -14.1 -16.4 -16.1 

Summer -15.6 -21.0 -21.6 -18.1 -19.7 -19.2 
Autumn -11.7 -16.7 -18.1 -22.4 -22.5 -24.0 

2050s 

Winter -19.0 -21.9 -24.0 -10.1 -16.7 -19.5 
Spring -20.2 -23.0 -26.1 -10.7 -13.6 -17.7 

Summer -27.9 -32.5 -36.7 -18.0 -22.3 -27.6 
Autumn -24.3 -25.1 -27.4 -24.2 -24.6 -28.8 

2080s 

Winter -21.4 -27.2 -31.0 -11.5 -18.5 -24.0 
Spring -23.6 -28.6 -32.5 -14.5 -19.0 -23.9 

Summer -32.7 -40.6 -46.6 -19.2 -24.3 -27.7 
Autumn -26.3 -31.6 -36.8 -25.1 -26.4 -29.7 
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Table 4. Future changes in groundwater recharge observed using the probabilistic change factors and using the daily weather generator data 
output from the UKCP09 

Scenarios Season % change (joint probability) % change (weather generator) 

  Low emission Medium emission High emission Low emission Medium emission High emission 

2020s 

Winter -16.9 -21.2 -24.0 -21.2 -19.2 -21.3 

Spring -17.4 -24.2 -25.7 -15.5 -20.0 -19.5 
Summer -31.5 -41.1 -36.1 -30.9 -32.9 -34.6 

Autumn -25.9 -36.4 -35.8 -30.9 -31.7 -34.4 

2050s 

Winter -28.0 -30.4 -34.3 -21.8 -25.5 -32.8 
Spring -32.9 -34.7 -41.7 -19.3 -20.0 -21.7 

Summer -52.8 -58.7 -62.3 -36.6 -35.5 -43.9 
Autumn -50.6 -52.6 -54.5 -30.8 -35.8 -39.3 

2080s 

Winter -28.7 -39.6 -46.3 -24.3 -28.0 -38.2 
Spring -37.9 -42.2 -46.6 -17.8 -28.2 -33.6 

Summer -56.9 -66.3 -71.7 -40.4 -44.6 -48.2 
Autumn -55.0 -62.9 -70.2 -40.0 -44.7 -48.2 

 
3.3.3. Drought Indices 

As projected under different climate change scenarios, 
the decrease in rainfall and increase in temperature would 
likely result in an increase of soil moisture deficit and 
increase in evapotranspiration (Figure 8). Under climate 
change projections, the soil moisture is showing an 
increase in SMD. The SMD and evapotranspiration are 
projected to increase with time and with the emission level 
being the highest in the 2080s under the high emission 
scenario. 

To quantify the impact of decreasing rainfall and 
increasing water losses due to the evapotranspiration, the 
standardised reconnaissance drought index, RDI was 
applied. 

The RDI for the three selected time periods and  
three emission scenarios is shown in Figure 9. Generally, 
the number of drought events increased with time  
and with emission level. Under low emission scenarios, 
the moderate drought events increased by three times  
in the 2050s and 2080s, in comparison to the baseline 
period. A slight change in precipitation and temperature 
was predicted to result in moderate droughts under  

the low emission scenarios for the 2020s, 2050s and  
2080s. Under medium emission scenarios, the number  
of drought events increased from the 2020s to the 2050s  
to the 2080s, combined with more severe and extreme 
events. In the 2080s, medium emission, in total seven 
drought events took, place which was almost double  
the number of the baseline period. In comparison to  
the medium emission scenarios, the number of extreme 
drought events increased with time under high emission 
scenarios due to the decrease in rainfall and increase  
in temperature which resulted in higher water losses  
by evapotranspiration which, in turn, resulted in higher 
severity of drought events. Although in the 2050s,  
under high emission scenarios, seven significant  
(2 extreme, 3 severe and 2 moderate) drought events  
are projected, the number and severity of the drought 
events (eight) was higher in the 2080s (3 extreme,  
2 severe and 3 moderate). In the 2080s, under high 
emission scenarios, three extreme drought events were 
projected due to warmer climatic conditions, especially in 
the summer and autumn seasons using the UKCP09 
weather generator data. 

 
Figure 8. Seasonal changes in soil moisture deficit and actual evapotranspiration in the Pang catchment under all emission scenarios based on UKCP09 
joint probability factors 

 



228 American Journal of Water Resources  

 
Figure 9. Severity of the annual drought events observed using the Reconnaissance Drought Index (RDI) season under all emission scenarios using the 
weather generator data 

3.4. Impacts of Land Use Changes  
on the Water Resources 

To study the impact of land use changes, a number of 
plausible (stakeholders’ input) and hypothetical land use 
scenarios were created. Not only the rainfall interception, 
water uptake and water evapotranspiration change the 
water balance but also temporal dynamics of the plant 
cover during the growth stages have significant impact on 
the initiation of the surface runoff and consequently the 
streamflow and the groundwater recharge. Results of 
possible land-use changes and the impact of the land use 
changes on the streamflow, groundwater recharge,  
soil moisture deficit, and the evapotranspiration are listed 
in Table 5. The evapotranspiration significantly affects  
the surface runoff from April to September as this period 
is the fastest growth stage of vegetation. The plants  
reach their maximum canopy cover, or Leaf Area  
Index, LAI during this period. The water losses by 

evapotranspiration are positively correlated with the  
LAI and canopy height, which are increasing during the 
April to September period. The possible and the 
hypothetical land use changes showed a varying impact on 
the selected hydrological variables, the river flow, the 
groundwater recharge, soil moisture deficit and the actual 
evapotranspiration.  

The expansion of the wood broadleaf forest would 
likely result in decreasing stream flow by 12.4%, 16.6%, 
14.4% and 9.0% during winter, spring, summer and 
autumn, respectively, while the groundwater recharge 
would decrease by 13.5%, 15.2%, 21.9%, and 9.6% 
during winter, spring, summer and autumn, respectively. 
The summer soil moisture deficit and evapotranspiration 
increased by 44.5% and 53.9%, respectively. The increase 
in soil moisture deficit, more specifically during the spring 
and summer seasons are due to the fact that the plant 
growth reaches its maximum, and plants take up and 
transpire water at maximum rate during this period. 

Table 5. Impact of land use changes in the Pang catchment on selected hydrological variables 

Hydrological variables Land use types 

 
100% Grass area 

replaced by winter 
barley 

Grass area 
replaced by oil 

seed rape 

40% urban expansion 
replacing grass and 

arable area 

Replacing 50% of 
winter barley by 

oil seed rape 

Whole 
catchment as 

grass area 

Whole catchment 
as Broad leaf 

forest area 

River flow 

Season % % change % change % change % change % change 
Winter 6.46 -2.8 1.14 -1.35 -2.64 -12.4 
Spring 6.10 -1.2 1.13 -0.50 -5.22 -16.6 

Summer 3.39 -0.31 0.42 -0.10 -8.35 -14.4 
Autumn 3.57 2.4 -0.05 -1.14 -3.90 -9.01 

Groundwater recharge 

Winter 6.53 -2.01 1.40 -0.47 -7.80 -13.48 
Spring 5.21 -0.05 1.90 0.30 -6.10 -15.21 

Summer 0.60 -1.95 1.40 0.58 -9.10 -21.90 
Autumn 6.48 3.91 1.80 -3.13 -5.30 -9.65 

Soil Moisture Deficit 

Winter -14.5 0.97 -14.8 0.46 13.65 2.1 
Spring -12.1 2.19 -12.8 0.46 5.67 13.1 

Summer -1.9 3.13 -6.70 0.86 11.76 44.5 
Autumn -4.6 0.45 -7.3 0.28 6.41 13.6 

Actual 
Evapotranspiration 

Winter -8.3 1.17 -10.2 0.91 11.28 4.64 
Spring -6.9 2.65 -8.80 0.91 4.69 15.80 

Summer -1.1 3.78 -4.6 1.72 9.72 53.87 
Autumn -2.6 0.54 -5.0 0.56 5.30 16.51 
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Changing grass area by winter barley led to a small 
increase in stream flow and groundwater recharge. Stream 
flow increased by 6.5%, 6.1%, 3.4% and 3.6% during 
winter, spring, summer and autumn, respectively. At the 
same time, the groundwater recharge increased by 6.5%, 
5.2%, 0.6% and 6.5% during winter, spring, summer and 
autumn, respectively. At the same time, there was a slight 
decrease in soil moisture deficit (< 1.9%) and a slight 
increase in evapotranspiration (<1.1%) in summer.  

If the whole catchment is dominated by grass, the 
stream flow is expected to decrease slightly in all seasons, 
2.6%, 5.2%, 8.4%, and 3.9% during winter, spring, 
summer and autumn, respectively. The groundwater 
recharge also slightly decreased by 7.8%, 6.1%, 9.1%, and 
5.3% in winter, spring, summer and autumn, respectively. 
The soil moisture deficit slightly increased by 13.7%, 
5.7%, 11.8% and 6.4% and evapotranspiration by 11.3%, 
4.7%, 9.7%, and 5.3% in winter, spring, summer and 
autumn, respectively.  

Replacing grass area by oil seed rape, led to a slight 
decrease (<3%) in stream flow in all seasons apart from 
autumn where the streamflow was slightly increased by 
2.4%. The groundwater recharge also slightly decreased in 
all season (~2%) apart from autumn, when the recharge 
increased by 3.9%. Here the soil moisture deficit and 
evapotranspiration increased slightly by up to 3% and 
3.8%, respectively in summer.  

Replacing 50% of winter barley with oil seed rape did 
not produce significant changes to river flow, groundwater 
recharge, soil moisture deficit and evapotranspiration. The 
same was observed when 40% of urban area replaced 
grass and arable area. However, the indication is the 
urbanization slightly increased (<2%) streamflow and 
groundwater recharge. 

Urban expansion is projected to result in increased 
streamflow, likely to increase in flood risk. Decreasing the 
area of the crops like winter barley and grass area and 
increasing the area of the oil seed rape would result in an 
increase of soil moisture deficit and a slight decrease in 
river stream flow, as oil seed rape is expected to take up 
more water during the spring season when the maximum 
plant growth takes place. Overall the impact of land use 
changes on the hydrological variables was less than the 
effect of climate change. However, land use change is 
crucial in mitigating the impact of climate change by 
introducing more sustainable land use practices which 
could reduce the impact of extreme events, both floods 
and droughts.  

4. Discussion 

This study analysed the impact of climate change  
on the possible occurrence of the drought events and  
the changes in streamflow and groundwater recharge of 
the Pang catchment. A number of drought indices were 
used in the study, which clearly identified all the historic 
droughts events, i.e. the 1970s, 1980s, 1990s as reported 
[42] 

The application of a wider range of drought indices 
could be used to identify different types of drought. For 
example, in agriculture, when soil moisture deficit, SMD 
or Wetness Index, WI of the root zone, reach a critical 

level, crops will require irrigation, particularly during the 
summer months which could add more pressure on the 
water supplies. The WI value, if close to 1, would indicate 
a wet catchment with a possible runoff generation during 
the next rainfall event. It is a help to reservoir managers to 
know the WI in real time. RDI would be helpful for short 
and long-term planning by water authorities and water 
companies. Therefore, the findings from the modelling 
work can be used to review the surface water abstraction 
regulations based on the successful test of the hydrological 
model which proved to be a good tool to reproduce the 
present and past stream flow and to predict future river 
flow, recharge to groundwater and the other elements of 
the hydrological cycle. 

Considering the possible future increase in water 
demand for agriculture, a possible solution would be to 
consider less water consuming crops such as quinoa, 
amaranth, lucerne and barley. The implication of  
water abstractions during drought and low flow period 
would reduce river flows, possibly below the minimum 
environmental limit. Alternatively, restrictions on abstraction 
to maintain the minimum environmental flows may restrict 
crop yields and food or bio- energy crop production. It is 
important to study groundwater recharge in the Pang 
catchment as chalk, the main aquifer in the catchment, 
releases the stored groundwater slowly to the river by 
base-flow. The effect of low rainfall and high temperature 
could be expressed by the RDI drought index that was able 
to show more severity and frequency of drought events in 
the latter half of the century (Figure 9). Considering the 
possibility of such droughts in the future, the agriculture 
and irrigation practices need to be adapted for the future as 
reduced water supply could be problematic for the 
irrigation in summer. The implication of water abstractions 
during drought and low flow period would reduce river 
flows possibly below the minimum environmental limit. 
Alternatively, restrictions on abstraction to maintain the 
minimum environmental flows may restrict crop yields 
and food (or energy) production. 

5. Conclusion 

The DiCasM model calibration and validation results 
showed a good agreement between the observed and the 
simulated flow with high overall model efficiency/goodness 
of fit. The Nash - Sutcliffe efficiency factor NSE, was 
above 82% for the 43year’s period. In addition to the 
stream flow, the DiCaSM hydrological model identified 
all past drought events of the 1970s, the 1980s, 1990s and 
the most recent ones in 2010-2011, using the drought 
indices, SPI, RDI, SMD, and the WI. Under the UKCP09 
climate change projection, the streamflow and the 
groundwater recharge significantly decreased with time 
and with emission level specifically during the summer 
months and the number, frequency and severity of the 
drought events significantly increased over time and with 
the increasing the emission level.  

Using the joint probability change factors, the stream 
flow and groundwater recharge are expected to decrease 
with time and with increasing the emission level by 37% 
and 70%, in the 2080s during summer and autumn, 
respectively. 

 



230 American Journal of Water Resources  

The highest impact of land use change was projected 
when increasing broad leaf forest. It would reduce stream 
flow and groundwater recharge by 15% and 19% during 
spring and summer, respectively. The other changes in 
land use produced small changes in stream flow and 
groundwater recharge of less than 10%.  

These findings would help in planning for perhaps extra 
water infrastructure work if needed, such as building more 
reservoirs or water transfer pipelines from water-rich to 
water-poor regions, e.g. from Wales to the South East, and 
adopting a contingency plan for future irrigation water 
demand. The findings of the study are helpful in managing 
the abstraction management strategy for the studied Pang 
catchment and reviewing of existing licensing abstraction 
limits.  

The results of the Pang catchment are applicable to the 
other catchments of the region and would help in future 
regional planning and management of the water resources 
in the southeast of England. 
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